SR

CS103 Handout 25
Spring 2012 June 8, 2012

CS103 Final Exam

This final exam is open-book, open-note, open-computer, but closed-network. This means that if
you want to have your laptop with you when you take the exam, that's perfectly fine, but you
must not use a network connection. You should only use your computer to look at notes you've
downloaded in advance. Although you may use laptops, you must hand-write all of your
solutions on this physical copy of the exam. No electronic submissions will be considered
without prior consent of the course staff.

SUNetlID:

Last Name:

First Name:

I accept both the letter and the spirit of the honor code. I have not received any assistance on
this test, nor will I give any.

(signed)

You have three hours to complete this exam. There are 180 total points, and this exam is worth
25% of your total grade in this course. You may find it useful to read through all the questions
to get a sense of what the test contains. Asa rough sense of the difficulty of each question, there
is one point on this exam per minute of testing time.

(1) Relations Revisited /30
(2) Regular Languages /30
(3) Context-Free Languages 125
(4) R and RE Languages /60
(5) P and NP Languages /35

/180

It has been a pleasure teaching CS103 this quarter. Good luck on the exam!

2/14

Problem One: Relations Revisited (30 points total)

Recall that a binary relation R over a set 4 is formally defined as a subset of 4 x 4; that is, Ris a
set of ordered pairs (x, y) where xRy iff (x, y) € R. This means that in addition to our previous
treatment of relations, we can consider relations from a set-theoretic perspective.

(i) Properties of Equivalence Relations (15 Points)

Prove or disprove: Every binary relation R over a set 4 is a subset of some equivalence relation
over the set 4.

3/14

(ii) Properties of Partial Orders (15 Points)

Prove or disprove: Every binary relation R over a set 4 is a subset of some partial order relation
over the set 4.

4/14

Problem Two: Regular Languages (30 points total)

Given two strings of Os and 1s, we say that those strings have the same 1-parity if both of the
strings contain an odd number of 1s or both of the strings strings contain an even number of 1s.

Consider the following language over Z={ 0, 1, M }:
IPARITY = { wMx | w, x € { 0, 1 }* and w and x have the same 1-parity. }

For example, 01M111 € /PARITY, 0011M111111 € IPARITY, and M € 1PARITY. However,
1MO ¢ IPARITY,MM & 1PARITY, 00MO1 & IPARITY, and ¢ ¢ IPARITY.

(i) Finite Automata (10 Points)
Design a DFA that accepts /PARITY.

(ii) Regular Expressions (10 Points)
Write a regular expression for /PARITY.

5/14

Consider the following language over the alphabet X = {1, 2}:
GE={1"21"|m,n € Nandm=>n}

For example, 11121 € GE, 11112111 € GE, and 12 € GE. However, 11121111 ¢ GE,
221 ¢ GE, and ¢ € GE.

(iii) The Pumping Lemma (10 Points)

Using the pumping lemma for regular languages, prove that GE is not regular. To help out, we
have sketched out a part of the proof; you should fill in the appropriate blanks.

Proof: By contradiction; assume that GE is regular. Let n be the length

guaranteed by the pumping lemma. Then consider the string w = r
We then have that w € GE and |w| = n, so by the pumping lemma we can write
w = xyz such that |xy| = n, y # ¢, and for any i € N, xy'z € GE.

(finish the proof in the box below)

We have reached a contradiction, so our assumption was wrong and GE is not
regular. W

6/14

Problem Three: Context-Free Languages (25 Points)

(i) Writing CFGs (10 Points)

LetX={0,1}. Consider the language NEP defined as follows.

NEP = { w| w is not an even-length palindrome }
For example, 0111 € NEP, 101 € NEP, and 101010 € NEP. However, 10100101 ¢ NEP,
¢ € NEP, and 0000 & NEP.

Write a CFG for NEP.

7/14

In lecture, we sketched a proof that if a language is context-free, there is a PDA for that
language. Our proof constructed a PDA from an arbitrary CFG that tried to simulate a derivation
of the input string from the start symbol. The construction built a PDA with three states:

» A start state that sets up the PDA’s stack with the start symbol of the grammar,

« A parsing state where each transition simulates either predicting which production to use or
matching a predicted symbol with the next character of the input.

« An accepting state entered when we find that the input string could be parsed.

The only part of the PDA that depends on the grammar is the set of transitions from the parsing
state to itself. This state always has the transition %, X — € to itself. Additionally, it has one
transition for every production in the grammar. For example, given the following grammar:

S — Aa|bB
A — ¢|aAb
B — b | bbAB

The resulting PDA is as follows:

X, X—¢

g, S— Aa

e, S—bB

g, A—¢

e, A— aAb
e, B—b

e, B— bbAB

Given a grammar G, let's denote by P(G) the automaton constructed this way.

For most grammars G, P(G) is a nondeterministic PDA. However, there are many grammars G
for which P(G) is a deterministic PDA.

(The question is on the next page. Feel free to tear this page out as a reference.)

8/14
(ii) Deterministic Parsing Automata (15 Points)

What property or properties must a context-free grammar G have for P(G) to be a DPDA?
Explain why P(G) is a DPDA iff G has the property or properties that you describe, though you
don't need to formally prove it. Make sure to address both directions of implication.

9/14

Problem Four: R and RE Languages (60 Points)
(i) RE and Verifiers (20 Points)
Recall that a verifier for a language L is a Turing machine ¥ such that

w€ L iff 3x € T*. Vaccepts (w, x)

In the context of NP we considered polynomial-time verifiers, verifiers that run in time
polynomial in the size of w. Let's relax this description and define a deciding verifier to be a
verifier ¥ for a language L such that V is a decider (that is, V" halts on all inputs).

Prove that if there is a deciding verifier for a language L, then L € RE.

10/ 14

(ii) Unsolvable Problems (25 Points)

Consider the following language Lsone:

Lome = { (M) | AM)) # © and KM,) # Z* }
Prove that Leme is not RE.

11/14

(iii) Properties of Reductions (15 Points)

Prove or disprove: If Ly <u L, and Ly <v Ls, then Ly <m L2 N Ls.

12/ 14

Problem Five: P and NP Languages (35 points total)
Just how hard are the NP-complete problems? In a sense, they are the “hardest” problems in

NP, because a solution to any one of them can be used to solve all other NP problems. How
accurate is that intuition?

It turns out that is possible to construct languages that are NP-complete but which can be
decided efficiently in many cases. One way to do this uses the disjoint union operation that you
saw in Problem Set 8. Recall that given languages L; and L, over {0, 1}*, the disjoint union

LW L, is the language
L]H'JL2={0W|W€L1}U{1W|W€L2}
(i) Relatively Easy NP-Complete Languages (20 Points)

Let L; be an NP-complete language and L, be any language in P. Prove that L, W L, is NP-
complete. This new language, while NP-complete, is easy for many inputs; we can decide in
polynomial-time whether any string starting with a 1 is contained within L; W L,.

13/14

(More space for your answer to Problem 3.1, if you need it.)

14/14

(ii) P = NP (15 Points)
This problem explores the question
What would it take to prove whether P = NP?

Below are ten statements. For each statement, if the statement would definitely prove that
P = NP, write “P = NP” on the appropriate line. If the statement would definitely prove that
P # NP, write “P # NP” on the appropriate line. If the statement would not prove either result,
write “neither” on the appropriate line. No explanation is necessary.

There is a regular expression for SAT.

There is no regular expression for SAT.

There is a deterministic polynomial-time algorithm for SAT.

There is a nondeterministic polynomial-time algorithm for SAT.

Every f(n)-time single-tape NTM can be converted
into an f{n)®-time single-tape TM.

Every f{n)-time multitape NTM can be converted
into an f{n)-time multitape TM.

For any , there is a language in NP that cannot be decided in time o(nb).

There is a language in NP that, for any &, cannot be decided in time o(nb).

There is a polynomial-time TM that correctly decides SAT for all strings of
length at most 10'®, but that might give incorrect answers for longer strings.

There is a polynomial-time TM that correctly decides SAT for all strings of
length at least 10', but that might give incorrect answers for shorter strings.

